
24 The Delphi Magazine Issue 53

A Delphi Multicaster Class
by Max Rahder

This article describes how to
implement a multicaster class

for Delphi. A multicaster allows
many objects to detect events. The
implementation is similar to excep-
tion handling: the multicaster
‘listener’ is passed an object and
the listener checks the object’s
type to determine which event
occurred. This design allows the
programmer to listen to any event,
such as a change in an object’s
state. For example, the multicaster
could be used to have any object
within an application detect
changes to a form’s caption. A
multicaster can also be used to
broadcast database changes, lis-
teners can then determine whether
their TDataSet objects need to be
refreshed to reflect the changes.

The Delphi Event Model
Delphi events are ‘singlecasters’:
an event is related to a single event
handler. This is a good model
because it is simple and meets the
needs of most situations. Multi-
casting event notification can be
found in Delphi. For example, a
TDataSource detects changes to its
associated dataset and notifies its
associated data-aware controls.
However, outside of creating one’s
own multicaster, there is no way to
get this kind of notification for
programmer-defined properties.

Figure 1 shows how a compo-
nent refers to its event handler. In
this example, a component named
Button1 runs a method named
Button1Click. Each TButton compo-
nent has its own set of instance
variables, including the variable
used to store the reference to the
OnClick event handler.

Figure 2 shows how a
multicaster stores references. An
instance of TEventMulticasterhas a
TList which stores an arbitrary
number of method references.
Refer to this diagram as you read
the implementation details in the
following paragraphs.

Design And Implementation
There are three classes in the
design: TMethodReferenceList is a
simple collection of method refer-
ences, TEvent is the base class for
all events sent through the
multicaster, and TEventMulticaster
subclasses from TMethodReference-
List, adding awareness of the
TEvent class. Let’s look at each
class in turn.

TMethodReferenceList
TMethodReferenceList is a simple
collection class. It will be extended
in TEventMulticaster to add
awareness of TEvent.

To add a method to the collec-
tion, the programmer runs Add
passing a method reference. This
method is the multicaster ‘lis-
tener’. This is analogous to regular
component events: a component
event stores a reference to a
method, called the event handler.
The multicaster stores several
method references, called multi-
caster listeners: see Listing 1.

Procedure references are
addresses. This contrasts with a
method reference, which is a pro-
cedure or function associated with
a class. It may be more accurate to
say that a method is a procedure
or function associated with an
object, because the reference
must store the address of the pro-
cedure and the address of the
object being referenced by Self
within the procedure. This means
that a method reference is actually
two addresses: the address of the
procedure and the address of the
object’s instance.

TMethodReference defines the
signature of a generic method. The
Add method allocates memory to
store a record holding the
reference, copies the address
information to the record, then

TMethodReference = procedure of object;
TMethodReferenceList = class(TObject)
private FList: TList;
protected procedure Add(aMethodReference: TMethodReference);
protected procedure Remove(aMethodReference: TMethodReference);
protected procedure Clear;
public constructor Create;
public destructor Destroy; override;
public procedure RemoveAllForAnObject(anObject: TObject);

➤ Listing 1

➤ Above: Figure 1 ➤ Below: Figure 2

January 2000 The Delphi Magazine 25

adds the address of the record to
the TList, see Listing 2.

TMethod is a Delphi-defined
record composed of two pointers
named Code and Data. Code is the
address of the procedure. Data is
the address of the instance. (This
may make it clearer why it’s possi-
ble to run a method on an object
reference containing NIL. The ref-
erence’s data type determines the
address of the method to be run.
The method will run until it tries to
reference Self, which will be set to
the instance’s address, which in
this example will be NIL. Methods
that don’t reference Self should
probably be declared as class
methods.)

To check if the method has
already been added, the code has
to check for both the procedure’s
address and the object’s address.
In other words, if two objects are
adding the same listener method
to the multicaster they will have
the same address for the method,
but a different address for the
object. The Add routine has to dif-
ferentiate between them.

The Remove method does the
opposite: it searches for the
method reference, de-allocates the

record, and removes the reference
from the TList.

I have included a catch-all
method named RemoveAllFor-
AnObject, which removes any
method associated with the object.
The idea here is that an object may
add many listeners to the collec-
tion in order to listen to different
events. When the object is freed, it
is convenient to remove all listen-
ers at once rather than run Remove
for each listener separately, see
Listing 3.

TEvent
In this design, the code that sends
a broadcast passes an object
describing an event. For example,
to send the event that a change
took place the code might read as
follows:

MyMulticaster.Broadcast(
TMyEventAfterChange.Create(
<data of interest to the
listener>));

The listener would look something
like Listing 4.

Therefore, we need to define an
ancestor event class used by the
multicaster. Sub-classes can add
properties used to pass data to the
listeners, see Listing 5.

The Sender property is needed
because we want to save a
reference to the object creating
the event. That way the listener
can listen to the broadcasts of sev-
eral multicasters.

Different types of event are
created by sub-classing TEvent:

TEventAfterChange =
class(TEvent);

These sub-classes could add prop-
erties if necessary. For example,
TEventAfterChange could add a
property named OldValue. A data-
base update event could add prop-
erties to pass the name of the table
and key of the record being
updated.

TEventMulticaster
TEventMulticaster is where we put
the method collection together
with the event class. TEvent-
Multicaster sub-classes from
TMethodList is the abstract class
ancestor of TEventMulticaster.
Other than RemoveAllForAnObject,
TMethodList methods are pro-
tected.

Listeners must match the signa-
ture defined by TEventListener,
see Listing 6.

AddListener and RemoveListener
just call the ancestor’s Add and
Remove methods, typecasting the
listener as TMethodReference.

procedure TMethodReferenceList.Add(aMethodReference: TMethodReference);
var
pMethodReference: ^TMethodReference;
i: integer;

begin
// Look at each method in the collection to see if aMethodReference has
// already been added.
for i := 0 to (FList.Count - 1) do begin
// Put the untyped FList pointer into the typed method reference pointer.
pMethodReference := FList.Items[i];
// Don't do anything if the method reference has already been stored.
if (TMethod(pMethodReference^).Code = TMethod(aMethodReference).Code)
and (TMethod(pMethodReference^).Data = TMethod(aMethodReference).Data) then
Exit;

end;
// If we get this far we're adding a new method reference. First allocate
// space to store the saved reference.
New(pMethodReference);
pMethodReference^ := aMethodReference; //save method ref data in new space
// Finally, save the address of the method reference data in the TList.
FList.Add(pMethodReference);

end;

procedure TMethodReferenceList.RemoveAllForAnObject(anObject: TObject);
var
pMulticasterEventListener: ^TEventListener;
i: integer;

begin
// Look at each method in the collection.
for i := (FList.Count - 1) downto 0 do begin
// Put the untyped FList pointer into the typed method reference pointer.
pMulticasterEventListener := FList.Items[i];
// If any procedure or function reference is associated with the passed
// object then de-allocate its memory and remove the reference from FList.
if (TMethod(pMulticasterEventListener^).Data = anObject) then begin
Dispose(pMulticasterEventListener);
FList.Delete(i);

end;
end;

end;

TMyClass.MyListener(anEvent: TMyEventAbstractClass);
begin
if (anEvent is TMyEventAfterChange) then
<do something>

end;

➤ Above: Listing 2 ➤ Below: Listing 3

TEvent = class(TObject)
private FSender: TObject;
public property Sender: TObject read FSender;
public constructor Create(aSender: TObject);

end;

➤ Above: Listing 4 ➤ Below: Listing 5

26 The Delphi Magazine Issue 53

Broadcast iterates over the collec-
tion and runs each method, pass-
ing the TEvent object. After all
methods are run, Broadcast
destroys the object, see Listing 7.

The Broadcast method does
something unusual: it deletes an
object it doesn’t create. Normally,
good design practice dictates that
the process that creates an object
is responsible for destroying the
object. The event model described
in this article intentionally mimics
the approach used by the excep-
tion handling model. Exceptions
are raised (ie an exception object is
created) to describe an event. The
type of exception is checked in
except on statements (ie they
check the exception object’s type).

The destruction of exception
objects is done as a side effect of
the process, it’s transparent to the
programmer. This multicaster
model ‘raises’ an event by creating
a TEvent object in the argument of
the Broadcastmethod. The event is
detected using the as operator in
the listener. The event object is
freed automatically after all
listeners have been run.

Example 1: Broadcasting
Changes To An Object
This example has two forms. The
main form, TFormMain, has a button
used to create instances of the
second form, TFormListener
(which is not autocreated). See Fig-
ures 3 and 4 respectively. In a real
world situation you’d associate
the multicaster with a business
object and the listener with any
object that needs to detect
changes to the business object’s
state, see Listing 8.

The constructor creates an
instance of TEventMulticaster and
stores it in FMulticaster. The
Edit1Change event handler assigns
the edit field’s Text property to
UserName. The UserName setter
sends the broadcast, see Listing 9.

TFormListener has a single panel,
see Listing 10. The TFormListener
constructor adds its listener
method, FormMainListener, to the
FormMain multicaster, see Listing
11. The FormMainListener event
checks to see what event was sent
and updates the panel’s caption to
reflect the new UserName value,
Listing 12.

If you run the application you’ll
see that each time you press the
button on FormMain a new instance
of TFormListener appears. If you
type in the FormMain edit field, each
listener form reflects the change as
you type.

Example 2: A Multicaster
On An Object Property
In practice it’s sometimes useful to
create a set of object oriented ver-
sions of Delphi’s fundamental data
types, such as TStringObject and
TIntegerObject. These data types
include a Multicaster property. In
this scenario, the TFormMain
UserName property is of type

TEventListener = procedure(anMulticasterEvent: TEvent) of object;
TEventMulticaster = class(TMethodReferenceList)
public procedure AddListener(anMulticasterEventListener: TEventListener);
public procedure RemoveListener(anMulticasterEventListener: TEventListener);
public procedure Broadcast(anMulticasterEvent: TEvent);

end;

procedure TEventMulticaster.Broadcast(aMulticasterEvent: TEvent);
var
i: integer;
pMulticasterEventListener: ^TEventListener;

begin
try
// Look at each method in the collection.
for i := 0 to (FList.Count - 1) do begin
// Put the untyped FList pointer into the typed method reference pointer.
pMulticasterEventListener := FList.Items[i];
// Run the method, passing the event.
pMulticasterEventListener^(aMulticasterEvent);

end;
finally
// When all methods have been told of the event free the event object.
aMulticasterEvent.Free;

end;
end;

TFormMain = class(TForm)
Edit1: TEdit;
Button1: TButton;
Label1: TLabel;
procedure FormCreate(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure Edit1Change(Sender: TObject);
procedure Button1Click(Sender: TObject);

private
FMulticaster: TEventMulticaster;
FUserName: string;
procedure SetUserName(const aUserName: string);

public
public property UserName: string read FUserName write SetUserName;
property Multicaster: TEventMulticaster read FMulticaster;

end;
TEventUserNameChange = class(TEvent);

➤ Above: Listing 6 ➤ Below: Listing 7

procedure TFormMain.SetUserName(const aUserName: string);
begin
if (aUserName <> UserName) then begin
FUserName := aUserName;
Multicaster.Broadcast(TEventUserNameChange.Create(Self))

end;
end;

➤ Above: Listing 8 ➤ Below: Listing 9

➤ Below: Figure 3
Bottom: Figure 4

28 The Delphi Magazine Issue 53

TStringObject. The listeners would
listen to UserName directly, rather
than having a single multicaster to
broadcast all of the TFormMain
events. Doing this also means
TFormMain no longer needs a
UserName setter, because the
multicaster takes care of broad-
casting changes. See the code in
Listing 13.

In this example, the
TFormListener constructor refer-
ences the UserName property’s
multicaster:

(Owner as TFormMain).UserName.
Multicaster.AddListener(
UserNameListener);

The TFormMain constructor needs
to create and save an instance of
TStringObject. The string object
doesn’t need to be explicitly
destroyed because TStringObject
sub-classes from TComponent.
TComponent instances are
automatically destroyed as their
owning object’s are destroyed. See
Listing 14.

Example 3: A Global
Database Update Multicaster
In some applications you need to
be able to detect table changes
throughout the application. For
example, several forms may con-
tain a TDBGrid showing customer
orders. If the user opens a form to
edit an order record and saves
those changes, then it can be

confusing to the user if the grids
don’t reflect the change. To handle
this with a multicaster, create a
global singleton object that con-
tains a multicaster. Also create a
new event class that has a
TableName property that holds the
name of the affected table, an

type
TFormListener = class(TForm)
Panel1: TPanel;
procedure FormCreate(Sender: TObject);

private
private
procedure FormMainListener(aMulticasterEvent: TEvent);

public
end;

procedure TFormListener.FormCreate(Sender: TObject);
begin
(Owner as TFormMain).Multicaster.AddListener(FormMainListener);

end;

procedure TFormListener.FormMainListener(aMulticasterEvent: TEvent);
begin
if (aMulticasterEvent is TEventUserNameChange) then
Panel1.Caption := FormMain.UserName;

end;

➤ Above: Listing 10 ➤ Below: Listing 11

➤ Listing 12

January 2000 The Delphi Magazine 29

UpdateKind property that reflects
whether the change was an insert,
update, or delete, and a RecordKey
property which stores the key of
the changed record. Any form that
updates a record would send a
broadcast through the global
multicaster. Forms containing the
grids would add listeners to the
multicaster. In their listeners,
those forms would check to see if
the changed table is being shown
on the form, and if so, refresh the
grid’s data source.

In Delphi, singletons are created
via an interface function (or class
function). Using a function makes
the reference read-only, see
Listing 15.

Conclusion
The multicaster class makes it
easy to integrate parts of an appli-
cation by allowing any number of
listeners to be aware of state
changes in objects.

This can be used as the need
arises, or can be built into an appli-
cation’s architecture at a more fun-
damental level. For example, if you
had good separation between
business objects and their user
interface, then the business
object’s properties could be
simple object types that include
multicasters. The user interface
would then add listeners for each
property of interest, and update
the interface as the property
changes (in a user interface using
data-aware controls this function-
ality is provided by the
TDataSource).

Note that multicaster functional-
ity can also be implemented
through messaging. However, the
approach described in this article
is easier to debug because the
code can be stepped through as it
executes, and besides, this imple-
mentation should work fine with
the Linux version of Delphi!

Max Rahder (www.rahder.org/
max) is an independent consul-
tant living in Madison, Wisconsin.
He is a certified Delphi and
JBuilder instructor. You can email
Max at max@rahder.org

interface
...
function DatabaseChangeMulticaster: TEventMulticaster;
...
implementation
...
var PrivateDatabaseChangeMulticaster: TEventMulticaster;
...
function DatabaseChangeMulticaster: TEventMulticaster;
begin
if not(Assigned(PrivateDatabaseChangeMulticaster) then
PrivateDatabaseChangeMulticaster := TEventMulticaster.Create;

Result := PrivateDatabaseChangeMulticaster;
end;
...
finalization
PrivateDatabaseChangeMulticaster.Free

TEventAfterChange = class(TEvent);
TStringObject = class(TComponent)
private
FValue: string;
FMulticaster: TEventMulticaster;
procedure SetValue(const aValue: string);

public
property Multicaster: TEventMulticaster read FMulticaster;
property Value: string read FValue write SetValue;
constructor Create(Owner: TComponent);
destructor Destroy; override;

end;
constructor TStringObject.Create(Owner: TComponent);
begin
inherited;
FMulticaster := TEventMulticaster.Create;
FValue := '';

end;
destructor TStringObject.Destroy;
begin
FMulticaster.Destroy;
inherited;

end;
procedure TStringObject.SetValue(const aValue: string);
begin
if (aValue <> Value) then begin
FValue := aValue;
Multicaster.Broadcast(TEventAfterChange.Create(Self));

end;
end;

constructor TStringObject.Create(Owner: TComponent);
begin
inherited;
FMulticaster := TEventMulticaster.Create;
FValue := '';

end;

➤ Above: Listing 13 ➤ Below: Listing 14

➤ Listing 15 ➤ Below: Figure 5

	The Delphi Event Model
	Design And Implementation
	TMethodReferenceList
	TEvent
	TEventMulticaster
	Example 1: Broadcasting Changes To An Object
	Example 2: A Multicaster On An Object Property
	Example 3: A Global Database Update Multicaster
	Conclusion

